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Abstract. The influence of the Hubbard interaction on the lattice structure of two half-
filled Su-Schrieffer-Heeger chains coupled by constznt electron hoppings is examined
using a linked cluster expansion of the Gutzwiller varialional wave function as well as
second-order perturbation theory. Parallel and antiparallel dimerized crystal structures
are considered. In the uncorrelated system the metallic undimerized and the insuiating
parallel dimerized phase compete. However, the state of lowest energy is antiparalle]
dimerized. In the case of finitc Hubbard interaction both the variational and the
perturbational approach yield a stabilization of the parallel dimerized configuration. For
the parallel dimerized model, the Guizwiller ansasz signals a new ordering of the electrons
in the bands: holes are present in the highest occupied single-particle states; the upper
valence band is occupied and the lower conduction band is empty even in the ‘metallic’
phase characierized by crossing bands.

1. Introduction

For quasi-one-dimensional systems it is weil kmown that conductivity depends on the
interchain charge transfer sensitively [1, 2]. Recent theoretical work focuses on effects
of both interchain and on-site electron—electron interaction and interchain hopping [3, 4].
It is challenging to consider the influence of the corresponding microscopic parame-
ters on the polymer ground state. As in first-principles calculations [5] we consider
two coupled chains. We start from a microscopic level and use the famous SsH model
[6] for each chain extended by a constant interchain interaction. This model has been
treated before by Baeriswyl and Maki [7], who found that antiparallel ordering of
dimerization is favoured for the ground state.

The main objective of this paper is to study the competition of the Hubbard
interaction and the interchain hopping. We concentrate on two questions:

(i) Does the Hubbard on-site repulsion change the ground state from antiparalle]
to paralie] ordering?

(ii) Can the interchain hopping suppress the Peierls instability and stabilize the
metallic state? (For more information about absence of the Peierls instability see

12, 8, 9])

The pressure dependence of the energy gap in trans-polyacetylene has been con-
tributed to these microscopic interactions recently [10]. Increasing pressure results
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in a shrinking energy gap [11, 12}, which is usually interpreted as an enhanced in-
terchain coupling. Trans-(CH), exhibits a large negative pressure coefficient and is
therefore a promising candidate for achieving a valence-conduction band overlap and
thus band conductivity in undoped material. The questions stated above will lead
us to this crossing effect automatically. We stress that in this work doping is not
considered: the chain orbitals are always half-filled with electrons, and the crossing
of bands leads to a new order of the electrons in the bands, but the total electron
number is conserved.

The paper is organized as follows: in section 2 we discuss the background of the
model relating it to existing experimental and theoretical work. We go on to calculate
the exact Peierls energy (section 3), include the Hubbard term (section 4) and using
a Gutzwiller variational ansatz we derive a simple second-order coefficient called the
correlation energy of the expanded ground state energy (section 4). Numerical evalua-
tion of the corresponding formula yields some unexpected results for the dimerization
in the case of crossing bands. As a test we apply second-order perturbation theory
in section 5, where we find consistency with the variational caleulations. Moreover,
in the limit of decoupled dimers the system can be solved exactly; this exact ground
state enerpy agrees up to terms of second order in U with our approximate energies
(section 5.1). In the last section we discuss the numerical results in detail: in the case
of the isomer with parallel dimerization a band overlap is possible. In the absence
of Coulomb interaction the isolating dimerized and the metallic undimerized phases
compete. Note that the presence of Coulomb interaction favours the dimerized phase.
The basis of the Gutzwiller wave function can be a single-particle Slater determinant
representing an excited state in the uncorrelated case. These excited states can be
characterized by full valence and empty conduction bands although the bands cross.
In the latter case we call the system ‘metallic’. The lattice belonging to these featured
states is dimerized.

The comparison between the three jsomers shows that the Hubbard interaction
determines which structure has the lowest energy. To be more explicit, the Coulomb
repulsion reverts the original energy difference between the parallel and antiparallel
dimerized structure.

2. Background of the model

There is experimental evidence for a monoclinic structure of the frans-(CH), unit
cell. The precise relation of the two inequivalent chains within the unit cell is
still an object of current research [13]. To determine the crystal structure, x-ray
and electron diffraction experiments [14-17] have concentrated on measuring the
(001) reflection. This peak is for the parallel (antiparallel} dimerized chains allowed
(forbidden) and sensitive to bond alternation defects. For example, Kahlert et af [16]
find an undisturbed P2, /a-crystallized region of 35 A only and state that small parts
of their sample are crystallized in the P2,/n space group. This situation reflects
the difficulties in interpreting the experiments and constructing theoretical models.
In order to improve the microscopic theory of conmjugated polymers [18] it is very
appealing to find out which interactions couple the chains significantly.

There exist some tight binding models with various simplifying assumptions for the
interchain coupling. Baeriswyl and Maki considered a linear geometry of the chains
and couple the directly opposite sites of two chains by constant and alternate hopping
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elements, and find antiparallel and parallel dimerized configurations, respectively
[7, 19, 20]. In order to simuiate the zigzag of the polymer chains, Fesser [21] studied
a realistic coupling between one site of a first and three sites of a second chain and
found antiparallel ordering. We have seen that the crystallinity of the experimentaily
available polymer samples is not perfect. Therefore Wolf and Fesser [22] introduced
a random contribution in the hopping between two a priori parallel dimerized chains.
It is well known that high conductivity of polyacetylenc can be achieved by doping
[23] and doping-induced structural phase transitions were found [24, 25}, which may
increase the number of chains within the unit cell. Mize and Conwell [26] took these
new features into account. In particular, they calculated that the Coulomb potentials
of the doping ions shift the bands and lead to partially filled bands. In our model the
band overlap is due to the strong interchain hopping only.

The energy gap and the crystal structure of polymers depend on the electron-
electron interactions and one has to take care of the correlation effects to explain
experiments. Horovitz [27] started with the Fréhlich Hamiltonian, included interchain
hopping and considered various electron-electron scattering processes. Primarily,
he examined the competition between superconductivity and the Peierls instability.
Kivelson and Heim [28] examined ‘Hubbard versus Peierls’ in a single ssH chain
using second-order Goldstone perturbation theory about the Hartree-Fock ground
state and in finite rings by studying exact solutions. Jeyadev [4] coupled two SSH
chains allowing the full Coulomb potential between all electrons. His calculations
applying second-order perturbation theory lead to a parallel dimerized ground state.
Baeriswyl and Maki [29] added a Hubbard term to a single sSH chain and used
the Gutzwiller wave function to approximate the ground state emergy. O’Connor
and Watts-Tobin [3] have extended this calculation to a two-chain model for general

polyacene [30].

3. Exact Peierls energy

The two coupled chains of conjugated polymers are described by the following Hamil-
tonian in dimensionless units (H, := H,/t, and t, :=t, /¢, where ¢, is the hopping
along an undimerized chain):

Hy= - Z tin(et 1 ioCn e THE) =t (ef 1 ,€n 00+ HC)+ N(AJE). (1)

FETILY

Here ;, = 1+(-1)"A and #; , = 1+ {-1)"*™A denote the alternating trans-
fer integrals along the chain j (’ J = 1,2) with parallel and antiparallel alignment,
respectively. The alternating contribution of the transfer term (A := 2ax/t,) is for
given electron~phonon coupling proportional to the lattice distortion = (measured in
A). The operators c:ﬂ-‘, (cn,j o) create (annihilate) a w-electron with spin o =T,
at site n {(n: —N/2,...N/2 —1). Finally, the harmonic force constant is given in
dimensionless units by 1/&% = «t,/a? [31].

Primarily, we are interested in the lowest energy of the chains in the presence of
period 1 and 2 lattice distortions. Therefore we test the different crystal structures
and vary the amplitude of dimerization. The Hamiltonian (1} can be exactly diag-
onalized: we introduce twa (! = 1, 2) conduction band (df; .} and two valence

band (d};’,,,a) operators, which are linearly combined and related to the operators in
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real space (c,, ; .) via Fourier transform. It is obvious that the diagonalizing unitary
transformations ((Al), (A3)) as well the diagonalized Hamiltonians ((A6), (A7)) are
different for parallel and antiparallel dimerization. The electronic part of the diagonal
energy oecrators runs over all quantum numbers and sums the single-particle ener-
gies Ef:, , which belong to occupied states. For parallel ordering the single-particle
energies have the known form {7]

EgY = —(-1)'t, + E, @

with the familiar dispersion of the single sSH chain

E, = 2\/cos?k + (Asin k)2, 3)

Band crossing can occur for ¢; > 2A.; in this case we find E7,, ) < EJ, , at the

edges of the Brillouin zone and EY, > EY at its centre.
The spectrum of antiparallel ordering

ESY = /{1, 4 (-1)2cosk)? + (2Asin k). @)

shows no crossing. Obviously, the general ground state of the two coupled chains is
given by '

At
|go) = l I dj 1 -lvacuum) ©)
k occupied
{,o,A=C,V

where the different quantum numbers run over the energetically lowest states. Thus,
in the case of crossing single-particle energies, the filling of £, and Ey, depends
sensitively on the interchain coupling.

In principle the uncorrelated problem is solved. In the next section we will
calculate the expectation value of the full Peierls-Hubbard Hamiltonian (an exact
diagonalization is not yet possible). We will calculate an upper limit of the ground
state energy as a function of certain single-particle expectation values (A8)—(A16).
Using these correlation functions we derive for 2, = {g,|H|g,) the exact formula

s [(1 — A)Cppy + (14 A)Coyy +1,Cyy | + N(A/E? ©)
which has the same form for parallel and antiparallel dimerization. However, we
emphasize that the correlation functions depend sensitively on the ordering of dimer-

ization and especially on the distribution of the electrons in the bands, which we shall
call *band filling’.

4. Variational approach

In this section we apply a variational method to approximate the ground state energy.
Firstly the on-site Hubbard term (U := U/t,)

H, =UD ™
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with the projector D = 3; D; and D; = 3, nyy 5,11, j,, I added to the Peierls

operator (1). The ground state is constructed by generalizing the Gutzwiller wave
function to the two-chain case [32, 33]:

lg) = exp (— = En, )fgo @)

The philosophy of this treatment is to find the best correlation paramerters 7.
Because of the model symmetry both variational parameters are equal (n = 1, = n,).
This parameter n describes the degree of the correlations.

The ground state energy can easily be estimated by expanding (8) or using formula
(12) in [34). With H = Hy+ UD and H,|g,} = £,|g,) one immediately obtains

e = (g|Hlg}/{glg} = {g|Hlg). ©)

e gq+ U{gy| D[go) — nU(QOID2|90>c + %ﬂz(go!DHuDlgo)c (10
where the subscript ¢ stands for connected diagram contributions (the norm of the
Gutzwiller wave function cancels the unlinked graphs). Varying e with respect to n
and abbreviating [g,) as ), one finds

n = 2U(D*)/{DH, D .. (1
Inserting {11) in (10) one obtains the minimized total energy:

exgp4 U(D)y - U?(Dz)ﬁ,c/(DHo D)D,c' (12)

The different expectation values are calculated with the help of (A8){(All):
(D)O = E("‘m,j,f”m,j,j,)u = E(nm‘j)g = 2Nc¥11"
m,§ m,j
(D2>D,c = Z: (nm,knn,j)tzl,c' (13)
ik

Using Wick’s theorem {35}, this is equal to

. 2
2 ((nm,k>0(nn,j)0 + (c:-n,kcn,j>0(6$rjtk.:n - C:,j cm.k)ﬂ)c

m,n

ik
=2N [Cfx,n (1 -2 (szn," + Clzn,.l.)) + E (C will + Cln J.)}
n

Restricting to the case of half-filling, one finds after carrying out the different sum-
mations that this is equal to

aNY (Chy+Char)- (14)
i
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In order to extract the connected diagrams from (D H, D), ., the following anticom-
mutator rule is used:

K= {ch D} = Z [tm,k (c.rl-n+1,k,o-cm,k,a' _HC) (nm-l-l,k,d' - nm,k,é’r)

mk,0
G (C;,],o'cm,z,d —~ HC) nm,k,&] . (15)
The denominator of the U2—coefficient in (12) can be calculated now:
(DH D)o . ={D K), .
=2 Z [tmk (nmu‘ (c:-i-l,kcn.k - HC)>0 (o, ; (nn+1,k - “n,k)}o
e
- tJ.(_l)k(nm,j {ef 1€n.2 = HODolRom i 1 k)0

=4N [(1 — A)Cyy (Cn.u ~ Chy + Cm.nz)

+ (14 A)Coy (Cn,u ~Cuy’+ Cza,ilg)

+t.Ciya (Crag = Cuag® + Cni?)] - (16)
For half-filling the total energy including the leading-order correlation energy reads:
ex~eg+ NUJ2-Ule_,. {(in

with

2
Ecor = N [E (Ci‘n." + Ci'n,.L)] [(1 - A)Chy (% + Cm,u?)

n

-1
+(1+A)Cy, (i‘ + 023,[12) +t,.Ch, (5t Cu,f)] . (18)

This formula is valid for both dimerization forms; however, the correlation functions
depend on the various dimerizations (A12)-(A16). The energy is numerically eval-
uated: the sum in the numerator of the correlation energy converges well and is
truncated after 100 summands. In the case of vanishing dimerization the value of
€ ooy Siven in [29, 37] is reproduced.

A characteristic feature of the ground state is the number of pairs per site,
Therefore we calculate the number of unprojected pairs per site (the pairs, which
survive the on-site repulsion):

1 1 1 U
P= (gD |9he = 5 (Dl = n(DHoc) = 7 = Foeom  (19)

Carmelo ef af [34] examined the accuracy of the present method for the pure
Hubbard model. To be more specific, they compared the above correlation energy as
a function of U for half-filling with the exact Bethe solution [36] and found a signifi-
cant difference for U/ > 21,. It is not known, however, whether this deviation signals
a similar trend for systems possessing dimerization. In the case of a finite Peierls—
Hubbard chain the method of complex-phase averaging [18] allows predictions for the
infinite case. Considering a single chain we find a monotonically increasing dimer-
ization for small values of the electron-phonon coupling and a monotonic decreasing
one for large & (> 0.7). This is in contrast with [18] where the guess for infinite
systems shows a true maximum.
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5. Perturbational approach

In addition to the variational approach it is useful to study other methods in order
to gain some insight into the coupling mechanism and to test the quality of the
variational results. Metzner and Vollhardt [37] showed that second-order perturbation
theory {38] vields the exact result [36] for the pure Hubbard model in the weak
coupling limit and approximates the exact energy for intermediate coupling strengths
(U < 101,) well. We extend their calculation to the case with dimerization.

3.1. Single chain (
In second order the correlation energy is given by
e D[g 2
e = 3 DAL @0)
{el E.

In this formulation D (see section 4) produces excited states |e} from the Peierls
ground state |g,}. Equation (20} is evaluated in four steps.

(i) First, the unitary transformation, which diagonalizes the unperturbed Hamil-
tonian, is modified. Therefore new operators with new wave vectors are introduced,
which run twice over the Brillouin zone—once over the valence states, the second
time over the conduction band (see symbol BZ? in (21)).

(ii) Second, D is expressed by these operators and it turns out that the trans-
formed Hamiltonian can be treated more easily, because the scattering between the
valence and conducting states is hidden in the amplitude of the perturbation operator.

(iii) Third, it is argued (see {38]) that the normal ordered I acting on a Fermi
sea possessing no holes scatters either two particles or none across the Fermi level
and that state {e| must contain the corresponding excitations.

(iv) Fourth, the four-body expectation value (20) is reduced to the corresponding
product of one-particle expectation values using Wick's theorem [35).

The single sSH chain is diagonalized by the transformation (Al) in [29]. We sep-
afate this formula in even and odd lattice points in order to get rid of the alternating
signs. Introducmg the new operators we get

_ 1240 _ 1 H(2n+1)=idrir(Ar 1

Con,e = Z e 'a; Contl,e = _\/N Z el (2n+1)=idekin (X )a.!,a
!EBZ’ 1eBZ?

(21)

where a, , annihilates an electron in the band, which is connected to the wave vector
via the function

(22)

A = { 1 if I refers to a valence state
! 2 if I refers to a conducting state.

Next, we insert ransformation ('21) into the Hubbard operator of a single chain [29]
and obtain

1 + +
D=+ ): Fim @5 195,107, ) @, | (23)
.k, megBZ3
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with the scattering amplitude

F:fkim = %61,k—j+m+uw (eiﬂjum +e—i'§jkim+ir(k,-um+v:|) (24)
where we have used the abbreviations

for the phases of the electron states involved and the signs

which depend on the combination of scattered valence and conducting states (see
(22). Moreover, we take normal (¢ = 0) and Umklapp processes (v = +1) into
account. Third, we follow Lindgren and Morrison (section 11.2 in [38]) and calculate
the normal ordered D and find that the Hubbard operator acting on a closed electron
shell (no holes below the Fermi level} can be reduced to

i
— - + +
D= 5 Z E FRo by BakaF, 9%, Thy,1 Gka 27
khkiakli 2

where the wave vectors k; run over all occupied and k; over all unoccupied states of

|90}
Finally, the correlation energy is given by the formula

1 2{PE T}n(nk, 1olPr, 1 )0, L )o
Eeorr — o9 . Fs 1, y . ; . N 28
= Nz k;,k§1 I-'gl Elkl?&ﬂk?] EE: + EEQ _ Ekl - Ek: ( )

with
lFEI ky E2 knlz = %Eknykl—f;l*l'kn-l'l’ﬂ [1 + cos (21951 kykaka — w(A§1 ky kp ko + I"’))] (29)

and with the occupied (unoccupied) single-particle energies £, (E; ). Here we have
used the abbreviation ), for the Peierls ground state |g,) and the density operators
po = Of 0k . for the electrons and #i; , = 1 — ng,, for the holes. In the
case of half-filling and N — oo, the formula (28) can be evaluated numetically by
standard integration methods,

It is well known that the Peierls energy has two stable minima (see figure 5 in
[6]). Surprisingly even the correlation energy is a double-well potential as a function
of dimerization (see figure 1). Note the variational and the perturbational results are
exactly equal for larger amplitudes of the dimerization, In the limit A =1 the chain
decouples into dimers, obviously. Let us expand the exact dimer ground state energy
[39] in analogy to (17}

SDimer_[_]__" _{,jim_ £~ 2_..].'_-7 |
“Dimer = = t1/1+1612_. t+ - Ul (30)

Setting the dimer hopping element £ equal to 1 + A we find that its second-order
coefficient numerically equals the variational and the perturbational results for A = 1.
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-0.015
; -0.018
?
Figure 1. Correlation energy ecor; (A} per site for
P — e s A t; = 0 (in units of tp). Variational result (I8)

A ' (solid); perturbational result (28) (dotted).

It is known that the Gutzwiller wave function exactly solves the dimer problem [40];
on the other hand, this limit of the model is unrealistic, as for large displacements
the linear dependence of the hopping integral on the lattice coordinates has to be
modified and replaced by an exponential dependence (as in the model of Brazovskii
et al [41]).

We agree with Kivelson and Heim [28] that potentials as in figure 1 enhance the
dimerization. However, this potentijal is only part of the total energy. Obviously the
relative position of the minima of £, (g, defined in (6) for £, = 0) and of £,
determines whether the Hubbard-U' enhances or reduces the dimerization. We stress
that the electron-phonon coupling & shifts the minima of e, whereas the minima of
€corr Ar€ not affected. In contrast to what was found by Kivelson and Heim [28] our
correlation energy does not change from a double-well to a parabolic potential for
larger U, Therefore we obtain no maximum for A as a function of U,

5.2. Two chains

The procedure for two chains i equivalent to the case of one. In the appendix we
give the modified transformations (A17)-(A24), which are inserted in the Hubbard
operator (7). We obtain the square of the scattering amplitudes for parailel ordering:

IFE: ki ka kzlz = 11_6622,'@1“514-’-72-!—”1\' (1 + e”"»'-‘hk,légkg)
X [1 + cos (2ﬂl_€),k),i_¢9k9 - W(Aﬁlkliﬂki + U))] (31)

and for antiparaliel ordering:
| F5 ks Bakal® = 750K, ks— Kyt katon (1 + e”“"“"""‘“""’))

X [1 + cos (25E,k.k,k, - ﬂiiklm;)] - (32)
We have introduced the new abbreviations

Biktm = =M + pp — 4+ Ly (33)
with

1 if k refers to E,C
He = ’ (34)

2 if k refers to Er,’f
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Figure 2. Paraiie] dimerization Ap/a as a function of U and ¢t1 (in units of tg).
() Dimensionless electron-phonon coupling Gssy = 0.57. Note the different regions
for the undimerized, metallic state (large ¢, and U not too large) and the dimerized
phase. Perturbation theory leads to the same dependencies. (b) Large electron-phonon
coupling & = 1. Results of perturbation calculation. The corresponding Gutzwiller
results decrease similarly as a function of U for small ¢; and do not depend on ¢;.

and
Diktm = =D, + Ty = Pt + Vs (33)

(9, and 9, ; are given in the appendix). In w@ to the one-chain model the
é-functions in (31), (32) can additionally scatter the electrons between the bands,
which belong to different chains in real space: consider a certain random selection
of wave vectors k,, k,, k,. The wave vector k, lies in the Brillouin zone. Nowhere
else are there electron states. Otherwise we have to add a reciprocal-lattice vector.
At half-filling, two empty states with the same wave vector are always contained in
lg0)- Therefore the resulting k, refers to two states, which belong to different bands.
Consequently the Coulomb interaction couples the chains. The correlation energies
are calculated using a Monte Carlo integration.

6. Discussion of the results

We summarize the main results first and discuss some details afterwards. For the
parallel dimerized model without electronic correlations (U = 0), we find a crossing
of the upper valence and the lower conduction band, which is related to an insulator—
metal transition. If the interchain coupling exceeds a certain threshold value, the
dimerization jumps from a finite value to zero, which leads to partially filled bands
and to a delocalization of the w<lectrons. For the antiparallel dimerized model we
find that the amplitude of the dimerization slightly depends on the interchain transfer
clement. Independently of ¢, , the antiparallel dimerized configuration is energetically
favoured in comparison with the undimerized or the parallel dimerized chains.

For finite Coulomb interaction (U # 0) we find that the energy difference between
the undimerized or the parallel dimerized configuration and the antiparallel dimerized
structure first increases and then decreases. The number of doubly occupied sites may
explain this effect: for finite Hubbard interactions there are more paired electrons in
the antiparallel than in the parallel dimerized structure.

Finally, we find that even in the case of band crossing the correlated wave function
is favourably constructed by valence states only.
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The details are as follows. In the case of parallel dimerization the interchain
coupling simply shifts the bands belonging to different chains versus each other. In
figure 2(a) we show A /&ggy as a function of ¢; and U. For U = 0 and increasing
t, the amplitude A does not depend on t, . Both valence bands are fully occupied
and therefore the correlation function C,, , (equation (A13})), which couples the
chains, vanishes. Up to a threshold value ¢ =~ 0.2 for the electron~phonon coupling
éiggy = 0.57 the chains behave as an uncoupled system and for all ¢, < ¢, . there
exists a finite gap E, = 4A —2t,. For A < ¢, /2 the single-particle energies Ey |
and Eg , cross at a certain wave vector k.. Then the clectrons with k > |k,| are taken
from the V, into the C, band in order to fill the energetically lowest single-particle
states and to avoid holes in the highest occupied single-particle states. For 2, > 1, .
we find A, = 0. In this case one has undimerized metallic chains and the bands
could be considered in the original, i.¢., extended Brillouin zone: here there are two
partially filled cosine bands.

For larger electron—phonon coupling the dimerization and therefore the energy
gap increase. For & = 1 and U = 0 it can be seen from the plot in figure 2(b) that
the alternating hopping along the chains jumps between 0 and 2, ie. the electron
transfer along the chains is interrupted.

_Contrarily, in the case of antiparallel dimerization the interchain coupling acts on
the energy bands more complicatedly. In particular, there is no crossing between the
higher valence and the lower conduction band. Instead, these bands seem to repel
each other in order not to cross. Moreover, the two valence (conduction) bands are
not independent functions of ¢, explicitly they are always degenerate for k = += /2
and arbitrary ¢, .

In figure 3 we have calculated Aap/& in analogy to figure 2. For U = 0 it is seen
that strong interchain coupling slightly decreases but cannot destroy the dimerization.
The increase of the electron-phonon coupling leads to larger dimerizations, but there
is no electronic decoupling along the chains for stronger &, because the directly

m—men malbe AL ANOC. . L. A

Figure 3. Antiparallel dimerization A.p/c. The system depends only weakly on the
strength of ¢,. (a) For electron—-phonon coupling &ssy = 0.57 (Gutzwiller results).
(b) For electron-phonon coupling & = 1 (perturbationa! results). Note the negative
slope as a function of U. The Gutzwiller and the perturbation methods give the same
dependencies on the parameters for (@) and (b).

In formula (19) we have shown that the Hubbard interaction breaks up some pairs
and therefore influences the ground state and its dimerization. In the case of the
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paralle] dimerized mode! figure 2(a) shows that the on-site repulsion increases t, ..
For t; <1, . it is found that the valence (conduction) bands are full (empty) and
therefore C,, 1 vanishes, ie. the total energy (equation (17)) does not depend on
t,. Nevertheless, there are two different phases, which are dlstmgulshed by £, >0
(t, -independent phase) and E; = 0 (U-independent phase). While in the first phase
the chains are actually decoupled in the U -mdependent phase there is a oompetxtnon
between the lattice energy and the ‘band filling’ for increasing £, . The result is that
the V, and the C, band only touch each other but do not overlap, and that the more
favourable ‘band filling’ compensates the increase of the lattice energy. Obviously,
whether one projects pairs from full valence bands or from a mixture of valence and
conducting states makes a difference,

The variational and the perturbational approach both lead to the same amplitude
of the dimerization, but there are significant energy differences, which have to do
with the competition between ‘band filling’ and lattice.

In figure 2(b) we show perturbational results for strong electron—phonon coupling.
For small U the decrease of the dimerization does not depend on ¢,. In contrast to
the variational results the dimerization for larger U depends on t,. For parameters
U, ¢, both large, the ‘pand filling’ effect stabilizes the dimerization and leads again
to an U-independent phase.

Within the antiparallel dimerized mode] there are no exceptional influences of
U/ on the dimerization. Both approaches agree for the different electron-phonon
couplings: in figure 3(a) we show that for &ggy the dimerization is increased by
U and in figure 3(b) that for strong electron—phonon coupling the dimerization is
decreased by the on-site repulsion.

Next, we want to demonstrate that an increase of the Hubbard interaction leads to
a stabilization of the parallel dimerized structure. We calculate the energy difference
between the lattice structures given in the figures 2(a) and 3(a). The results are
shown in figure 4(a): for increasing Hubbard U the energy difference first increases
then decreases; finally the parallel dimerized structure becomes stable {negative value
of 6e,, in figure 4(a)). Figure 4(b) suggests a possible explanation: for a small on-site
repulsion the number of paired electrons on the undimerized chains is greater than in
the stable antiparailel dimerized phase. Stronger electron—electron interactions lead
to parallel dimerization with fewer pairs than the antiparallel dimerized phase.

These dependences on U are conserved for stronger electron—-phonon coupling.
It seems possible that a change of the microscopic parameters by external impacts
leads to new conformations as for example in the hydrogen-bonded polymer HBr [42],
which goes at high pressure from the asymmetric to the symmetric bonded phase.

Based on these results we propose a new ‘band filling’ for the parallel dimerized
model. As we have seen in figure 2(z) there has been a competition between lattice
energy and ‘pand filling’, which has led to the U-independent phase. Originally, we
have operated with the Gutzwiller projector on the true U = 0 ground state, but we
have found no dimerized ‘metallic’ ground state. Now we operate on a U = 0 excited
state: we select an alternative trial wave function, where the valence (conduction)
bands are always fully occupied (empty) even in the case of band crossing (A, <
t, /2). In other words, to form the U/ > O variational state, the Gutzwiller pro;ector
D acts on an excited eigenstate of H,, ie. there are holes in the energetically
highest occupied single-particie states. This new feature leads to divergences in
the perturbation theory (one has to use the formalism of open shell systems [38]).
Therefore, we have used the variational approach to calculate the dimerization shown
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Figure 4. (a) Energy difference between the isomer results of figure 2(a) and 3(a):
Sen = 100 (€aap — £ap)/€aap for &ssy = 0.57. Calculation with Gutzwiller cor-
relation energy (18). For finite on-site repulsion §c increases and then decreases.
Perturbation theory yields a faster energy stabilization (5e5 < 0 for U 2 4) of the par-
allel dimerized structure than the Guizwiller expansion. (6) The number of the expected
pairs 2N 8P on the undimerized or parallel dimerized chains minus the pairs on the
antiparallel dimerized chains (6P = P, — Fap, P from (19)). U > 0: in real space
the undimerized (metallic) crysial contains the most pairs and the antiparallel dimerized
configuration more than the parallel dimerized phase.

in figure S. The unusual U-independent phase has disappeared and the bands cross.
This dimerized ‘metallic’ state costs slightly more electronic energy, but much less
lattice energy. Moreover, the precise comparison between figure 2(a) and 5 shows
that the new order of the electrons in the bands enhances ¢_. Let us list the advantages
of the dimerized phase.

(i) The dimerization costs lattice energy and the creation of holes leads to an
energy increase for the single particles, which have to leave the conduction band
(ii) The gain of energy is caused by the new dispersions (E,?,’,v depend on A)
and, what is most important, by the larger correlation energy.

(iii) Finally, figure 6 gives energy-based evidence that the Peierls-Hubbard system
prefers valence states as compounds of the correlated wave function.

Applying the model calculations to polyacetylene we choose the standard pa-
rameters &« = 4.1 eV Al k = 21 eV A-2, {, = 2.5 eV, which lead to
& = af/xT, =~ 0.57. Assuming a realistic interchain hopping parameter less than
0.2 t, we see from figure 4 that the energy difference between parallel and antiparal-
lel ordering is very small and tends to favour the parallel ordering for larger Hubbard
U. Ultimately it seems plausible that (CH), is always near the transition between
the two phases, which would be consistent with the experiments of Kahlert et al [16).
Because of the weak interchain coupling, we do not expect correlation-induced holes
in the highest occupied single-particle states.

Note, however, that the theory presented is not limited to polyacetylene. It makes
sense to conceive this material as embedded in a theory for general graphite and for
the broader class of synthetic metals [18). Indeed, the newly reported electronic
properties of graphitic microtubules depend sensitively on the tubule structure, Using
a tight binding method Hamada er al [43] find band structures with and without
crossing as a function of the various atomic configurations. M(dmit), salts [44, 45]
also seem to show the strong features of the model with parallel bonds discussed
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Figure 5. Pamallel dimerization. A, /agsp for the
Guizwiller method. If By = 4A,~2t; < 0
the dimerized phase is calculated with an excited
eigenstate of Ho: in contrast to the Peierls ‘band
filling’ in figure 2(a) the valence bands are full and
the conduction bands empty. In spite of there being
holes in the highest occupied single-particle energy

Figure 6 Energy difference for Gutzwiller re-
sults based on the excited eigenstate of Hp with
full valence (empty conduction) bands (€new < 0)
and based on the ground state of Hp with Peierls
‘band filling’ (€peierts < 0) Ber = 100 (€new —
€Peierls) /Enew for Gssp = 0.57 (€new is stable
if Se¢ > 0).

this new ‘band filling’ is energetically preferred.

above. One only has to replace interchain by interstack interactions: ‘The strength
of the interstack interactions depends subtly on the interaction geometry, and can be
quite strong’ [44].

Generally, we agree with Horovitz [27] that pressure increases the interchain
coupling, and that above some critical pressure the lattice instability in substances,
which cannot arrange the bonds antiparallel, is suppressed. Taking the new correlation
effect into account we find that the undimerized phase is always metallic, whereas the
dimerized one is insulating only if the bands do not cross.

7. Conclusion

In short, we state the main results of this paper. An increase of the electron-
electron on-site repulsion may lead to a transition from an antiparailel dimerized
ground state to a parallel one. For finite Hubbard interaction the number of paired
electrons in real space depends on the lattice structure under consideration: it is
smallest for parallel dimerized chains and largest for undimerized ones. Applying
our model calculations to polyacetylene we find that the energy of both the parallel
and antiparallel dimerized structures does not differ significantly. The assumption
of paralle] dimerized bonds enables us to explain that an increase of the interchain
hopping may lead to an absence of the lattice instability.

In summary, the variational and perturbational model calculations yield consis-
tent results, It is important to stress that the Gutzwiller variational wave function
allows to make different choices for the underlying one-particle wave function. For
finite Hubbard interaction and finite dimerization we have found that the Gutzwiller
projector operates on fully occupied valence bands even if they cross.

Generally, it is interesting to apply the method to substances as graphitic mi-
crotubules [43] and to get more insight in the many-body problem, e.g. to include
off-diagonal electron—¢lectron interactions [18].
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Appendix
The pure Peierls Hamiltonian (1) for parallel bonds is diagonalized by
i i n n
nsir = gam 2 I e + D)
+dl 50+ (~1)"dE 5,0] (A1)
with the phase
9, = jarctan (A, tan k) (A2)

and for antiparallel bonds by

tkn =1y, a0 f4+n
i \/2_N'Z:EI [(“I)Je( DT, (dk1,0 + (=17 dz’,z.a)

4l (@Y 4 (<1, )] (A3)

with the phase

—1Y!
90 = 120 ((-1)'A,, sin k) — 1] arccos (t'L +( El) 2cos k) (Ad)
k,1
and the step function
0 fz<0
o = AS
(=) {1 if 30 @)

The diagonalized energy operators for parallel and antiparallel bonds are respectively:

Hy, =~ Z [Ey (n{ 1,0 —nE10) + (-1t (n1o +n510)] + Zlattice  (AS)
ko

HIJ ap Z Ek i nk e nk { a) + Elattice- (A—,)
ko

The operators ng k ,a test the number of fermions in the respective states.

Some expectation values appearing in {g,|Hglgo) are equal and it is suitable o
define some (spin independent) correlation fanctions. In the case of paralle! dimerized
chains:

Cmn,u = (Qolcyt;,l cn,zlgn) = (goiciq,zcn,zlgo) = (goici,lcm,ﬂgo) (A8)

Chn,L = (goi¢;,1cn,zlgn) = (golcvtz,zcn,ﬂgﬂ) = {golcﬁ,l Cm,zlgu)- (A%
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In the case of antiparallel dimerized chains:
Cmﬂvll = (Qo|c:q,2cn,2i90> = (Qolc;+1,1"—'u+1.1lgo} = (goic':,zcm,zigo) (A10)

Cm-n.,J. = (gﬂicj‘n.lcnﬂ‘gt)) = (QGIC;+1,2Cn+1,1190) = (golci,zcm.:lgo)- (Al1)

We insert the operator transformations (A1) and (A3) in the formulas above and
obtain for paralle! ordering

I m
Crny = w}; i malgolnd s + nlp + (- 1™ (nF, + nF5)l0) (A12)

1 m+n
Crnot = 537 2 Fbmalgolnd s = 0l + (1) (nE, — nf )lg0) (A13)
k

with the amplitude

¢k.mn = cos (k(n - m) + [(_1)n - (_1)m] 191:) (A14)
and for antiparallel ordering

el = %5—; {cos ((n = m) +[(~1)™ = (~D)"} 9y 1)

x {golngy + (=1)™*"n] 1190}
+ cos (k(n — m) + [(=1)™ — (=1)"*} ¥, 5)
X {go|“:,2 + (—~1)ymn nf,ﬂgo)} (A15)

Crunys. = %—}; {~cos (k(n = m) + [(=1)™ + (=1)*]9,.,)

x {goln§, — (-U*"*"n}f,dgn)
+ cos (k(n — m) + [(=1)" + (~1)"] ¥, )

x {golni s = (=1)™*"ng lge}} - (A16)
In the case considered infinite chains (N — oco) and periodic boundary
conditions—the correlation functions can be easily evaluated by numerical integration
over the Brillouin zone (see [6, 29)).
The unitary transformations (Al), (A3), which diagonalize the two chain models,
are redefined to simplify the procedure of second order perturbation theory.
In the case of parallel dimerized chains:

1

e —_ : e”zn‘{-i‘ﬂl"i‘i?"#!a Al7
2n,l,0 m,é; [ ( )
Conttng = ;N Z iI(?n-}-l)-—ix?;+i7r(J\;+,u;+l)aha (A18)
1eBZ*
— |12n+l1§ya Alg
Can,2,0 m z§34 ( )
! i —id i
Con41,2,0 = il Z eIt )=idr+ “("""l)a;,a (A20)

[«BZ4
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with A; defined in (22) and 4, in 34).

In the case of antiparallel dimerized chains:

1 i12n i, Hir(Ar+1)
c = — E e e HURRY A2l
2n,l,0 (—2N e Lo ( )
1 W2n1)bidy ., Firp
C = —m e e ta AZZ
2n41,1,0 BN 13224 Lo (A22)
1 2 +idy
c -_— e Hia A23
2n,2,0 f—zN !e%‘ Le ( )
—_ E : lf(2n+l) l‘l?;‘“-i-lw(kz-[-uz-l-l]u (A24)

Contl,2,0 — ;———
m ’ 2NieBz‘
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