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AbstrncL The influence of the Hubbard interaction on the lattice structure of hvo half- 
filled SuSchrieiier-Heeger chains mupled by “ a n t  electron hoppings b examined 
using a linked duster expansion of the Guuwiller varialional wave function as well as 
aecond-order perturbation theory. Parallel and antiparallel dimerized q t a l  svuctures 
are mnsidered. In  lhe uncorrelated system the metallic undimerized and the insulating 
parallel dimerized phase mmpete. However, the sate of lowest energy is antiparaltel 
dimerized. ln the case of finite Hubbard interaction both the variational and the 
perturbational approach yield a stabilization of the parallel dimerized mnfiguration. For 
the parallel dimerized model, the Gullwiller m o Q  signals a new ordering ol the eleetronr 
in lhe bands: holes are ~ e n t  in the highest mupied single-particle stales; the upper 
valence band h occupied and the lower mnduction band is empty wen in lhe ‘metallic’ 
phaw characterized by m i n g  bands. 

1. Introduction 

For quasi-onedimensional systems it is well h o w  that conductivity depends on the 
interchain charge transfer sensitively [l, 21. Recent theoretical work focuses on effects 
of both interchain und on-site eleclron-electron interaction and interchain hopping [3, 41. 
It is challenging to consider the inlluence of the corresponding microscopic parame- 
ters on the polymer ground state. As in first-principles calculations [SI we consider 
two coupled chains. We start from a microscopic level and use the famous SSH model 
[6] for each chain extended by a constant interchain interaction. This model has been 
treated before by Baerisyl and Ma& [I, who found that antiparallel ordering of 
dimerization is favoured for the ground state. 

The main objective of this paper is to study the competition of the Hubbard 
interaction and the interchain hopping. We concentrate on two questions: 

(i) Does the Hubbard on-site repulsion change the ground state from antiparallel 
to parallel ordering? 

(U) Can the interchain hopping suppress the Peierls instability and stabilize the 
metallic state? (For more information about absence of the Peierls instability see 
I2 8, 91.) 

The pressure dependence of the energy gap in tram-polyacetylene has been con- 
tributed to these microscopic interactions recently [IO]. Increasing pressure results 
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in a shrinking energy gap [ll, 121, which h usually interpreted as an enhanced in- 
terchain coupling. Tmns-(CH), exhibits a large negative pressure coefficient and is 
therefore a promising candidate for achieving a valenceconduction band overlap and 
thus band conductivity in undoped material. The questions stated above will lead 
us to this crossing effect automatically. We stress that in this work doping is not 
considered the chain orbitals are always half-filled with electrons, and the crossing 
of bands leads to a new order of the electrons in the bands, but the total electron 
number is conserved. 

The paper is organized as follows: in section 2 we discuss the background of the 
model relating it to existing experimental and theoretical work. We go on to calculate 
the exact Peierls energy (section 3), include the Hubbard term (section 4) and using 
a Gutmiller variational anmtz we derive a simple semnd-order coefficient called the 
correlation energy of the expanded ground state energy (section 4). Numerical evalua- 
tion of the corresponding formula yields some unexpected results for the dimerization 
in the case of crossing bands. As a test we apply second-order perturbation theory 
in section 5, where we tind consistency with the mriational calculations. Moreover, 
in the Limit of decoupled dimers the system can be solved exactly; this exact ground 
state energy agrees up to terms of second order in U with our approximate energies 
(section 5.1). In the last section we discuss the numerical results in detail: in the case 
of the isomer with parallel dimerization a band overlap is possible. In the absence 
of Coulomb interaction the isolating dimerized and the metallic undimerized phases 
compete. Note that the presence of Coulomb interaction favours the dimerized phase. 
The basis of the Gutmiller wave function can be a single-particle Slater determinant 
representing an excifed state in the uncorrelated case. These excited states can be 
characterized by full valence and empty conduction bands although the bands cross. 
In the latter case we call the system 'metallic'. The lattice belonging to these featured 
states is dimerized. 

The comparison between the three isomers shows that the Hubbard interaction 
determines which structure has the lowest energy. TI be more explicit, the Coulomb 
repulsion reverts the original energy difference between the parallel and antiparallel 
dimerized structure. 

U Pecher and H &mer 

2 Background of the model 

There is experimental evidence for a monoclinic structure of the "I-(CH), unit 
0eU. The precise relation of the two inequivalent chains within the unit cell is 
still an object of current research 1131. TJ determine the crystal structwe, x-ray 
and electron diffraction experiments [14-17] have concentrated on measuring the 
(001) reflection. This peak is for the parallel (antiparallel) dimerized chains allowed 
(forbidden) and sensitive to bond alternation defects. For example, Kahlert d ul 1161 
find an undisturbed P2,/a-crystallized region of 35 A on& and state. that small parts 
of their sample are crystallized in the P2,/n space group. This situation reflects 
the difficulties in interpreting the experiments and constructing theoretical models. 
In order to improve the microscopic theory of conjugated polymers [18] it is very 
appealing to find out which interactions couple the chains significantly. 

There exist some tight binding models with various simplifying assumptions for the 
interchain coupling. B a e r w l  and Maki considered a linear geomety of the chains 
and couple the directly opposite sites of two chains by constant and alternate hopping 
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elements, and find antiparallel and parallel dimerized configurations, respectively 
[7, 19, 201. In order to simulate the zigzag of the polymer chains, Fesser [21] studied 
a realistic coupling between one site of a fust and three sites of a second chain and 
found antiparallel ordering. We have seen that the crystallinity of the experimentally 
available polymer samples is not perfect. Therefore Wolf and Fesser [22] introduced 
a random contribution in the hopping between two a priori parallel dimerized chains. 
It is well known that high conductivity of polyacetylene can be achieved by doping 
[U] and doping-induced structural phase transitions were found [24, U], which may 
increase the number of chains within the unit cell. Mize and Conwell 1261 took these 
new features into account. In particular, they calculated that the Coulomb potentials 
of the doping ions shift the bands and lead to partially fdled bands. In our model the 
band overlap is due to the strong interchain hopping only. 

The energy gap and the aystal structure of polymers depend on the electron- 
electron interactions and one has to take care of the correlation effects to explain 
experiments. Horovitz [27l started with the Frohlich Hamiltonian, included interchain 
hopping and considered various electron-electron scattering processes. Primarily, 
he examined the competition between superconductivity and the Peierls instability. 
Kivelson and Heim [ZS] examined 'Hubbard versus Peierls' in a single SSH chain 
using second-order Goldstone perturbation theory about the Hartree-Fock ground 
state and in finite rings by studying ewct solutions. Jeyadev [4] coupled two SSH 
chains allowing the full Coulomb potential between all electrons. His calculations 
applying second-order perturbation theory lead to a parallel dimerized ground state. 
Baeriswyl and Maki 1291 added a Hubbard term to a single sSH chain and used 
the Gutzwiller wave function to approximate the ground state. energy. O'Connor 
and Watts-'Ibbin [3] have extended this calculation to a two-chain model for general 
polyacene [30]. 

3. Exad Peierls energy 

The two coupled chains of conjugated polymers are described by the following Hamil- 
tonian in dimensionless units ( H a  := H a f t o  and t I  := t , / t ,  where t ,  is the hopping 
along an undimerized chain): 

~0 = - .F t j , n ( C ; t + l , j , a C n , j , a  + HC) - t l (Cn, t ,acn,Z.a  t + HC) -t N(A/G)'. (1) 

Here t j , ,  = 1 4- (-1)"A and t .,?l - 1 + (-1)jt"A denote the alternating trans- 
fer integrals along the chain j (j =-1,2) with parallel and antiparallel alignment, 
respectively. The alternating contribution of the transfer term (A := 2az/ t , )  is for 
given electron-phonon coupling proportional to the lattice distortion z (measured in 
A). The operators c ; , ~ , ~  ( c ~ , ~ , ~ )  create (annihilate) a x-electron with spin D =r,l 
at site n (n: - N / 2 , .  . . N / 2  - 1). Finally, the harmonic force constant is given in 
dimensionless units by 1 / 6 *  = n t , / a 2  [31]. 

Primarily, we are interested in the lowat energy of the chains in the presence of 
period 1 and 2 lattice distortions. Therefore we test the different crystal structures 
and vary the amplitude of dimerization. The Hamiltonian (1) can be exactly diag- 
onalized: we introduce two (I = 1, 2) conduction band (d&-) and two valence 
band ( d & o )  operatoa, which are linearly combined and related to the operators in 

J,n a 
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real space ( c ~ , ~ , ~ )  via Wurier transform. It is obvious that the diagonalizing unitary 
transformations ((Al), (A3)) as well the diagonalized Hamiltonians ((A6), (A7)) are 
different for parallel and antiparallel dimerization. The electronic part of the diagonal 
energy 0 erators runs Over all p n N m  numbers and sums the single-particle ener- 
gies E:;!, which belong to occupied states. For parallel ordering the single-particle 
energies have the known form [A 

U Pecher and H &tIner 

with the familiar dispersion of the Single SSH chain 

E, = 2 \ / c o s 2 k + ( A s i n k ) ~ .  (3) 

Band crossing can occur for t L  > 2A,; in this case we find E:,,,, < E:,2,1 at the 
edges of the Brillouin zone and E& > E& at its centre. 

The spectrum of antiparallel ordering 

'k,Z -3q/(tL+(-1)'2cosk)2+(2Asink)2. - (4) 

shows no crossing. Obviously, the general ground state of the two coupled chains is 
given by 

where the different quantum numbers run over the energetically lowest states. Thus, 
in the case of crossing single-particle energies, the filling of E& and E& depends 
sensitively on the interchain coupling. 

In principle the uncorrelated problem is solved. In the next section we will 
calculate the expectation value of the full Peierls-Hubhard Hamiltonian (an exact 
diagonalization is not yet possible). We will calculate an upper limit of the ground 
state energy as a function of certain single-particle expectation values (AS)-(A16). 
Using these correlation functions we derive for eo = (go[Holgo)  the exact formula 

c0  = - 4 N  [(I - A)%,ll +(I + A)cn,ll t f ~ c ~ ~ , ~ ]  + W A / & ) '  (6) 

which has the same form for parallel and antiparallel dimerization. However, we 
emphasize that the correlation functions depend sensitively on the ordering of dimer- 
ization and especially on the distribution of the electrons in the bands, which we shall 
call 'band lilling'. 

4. Mriational approach 

In this section we apply a variational method to approximate the ground state energy. 
Eustly the on-site Hubbard term (U := U / t o )  

H ,  = U D  0 
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with the projector D = C j  Dj and Dj = Cm v ~ , , , , ~ , ~ n ~ , ~ , +  is added to the Peierls 
operator (1). The ground state is constructed by generalimg the Gutzwiller wave 
function to the two-chain case [32, 331: 

The philosophy of this treatment is to find th: best correlation paramerters vj. 
Because of the model symmetry both variational parameters are equal (q = vi = q2). 
This parameter 1) describes the degree of the correlations. 

The ground state energy can easily be estimated by expanding (8) or using formula 
(12) in [34]. With H = Ho + U D  and Hotgo) = e0lg,,) one immediately obtains 

E = (slHls)/(s19) = (sl~19), 

E Y €0 + u(golDlgo) - qU(golD21go), + $v2(golDHoDlgo), 

(9) 

(10) 

where the subscript c stands for connected diagram contributions (the norm of the 
Gutzwiller wave function cancels the unlinked graphs). Mrying E with respect to q 
and abbreviating Iso) as )o one finds 

q = 2U(D2) / (DHoD)o,c .  (1 1) 

E 2 € 0  + U P ) ,  - U ( ) o , c / ~ D H o ~ ) o , c .  

Inserting (11) in (10) one obtains the minimized total energy: 

(12) 2 D2 2 

The different expectation ralues are calculated with the help of (A8)-(All): 

( Q o  = C(nm,j,fnm,j,l)o = E(nm,jZ = ~NC?,,II 
m,j m,j 

Restricting to the case of half-filling, one finds after carrying out the different sum- 
mations that this is equal to 
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In order U) extract the connected diagrams from (DH,D),, , ,  the following anticom- 
mutator rule is used: 

U Pecher and H BOttner 

K = ( H o , D )  = [tm,k (cL+ l ,k ,ncm,k ,n  -Hc) (nm+l,k,a -nm,L.b)  
m,k,o 

(15) k t  - (-1) 1 1  (cm,l,ocm,2,s - HC) nm,k,61 . 
The denominator of the U2-coefficient in (12) can be calculated now: 
(DHOD),,, = ( D  a 0  . 

(18) 
This formula is valid for both dimerization forms; however, the correlation functions 
depend on the various dimerizations (A12)-(A16). The energy is numerically eval- 
uated: the sum in the numerator of the correlation energy converges well and is 
truncated after 100 summands. In the case of vanishing dimerization the value of 
eUlm given in [29, 371 is reproduced. 

A characteristic feature of the ground state is the number of pairs per site. 
Therefore we calculate the number of unprojected pairs per site (the pairs, which 
survive the onsite repulsion): 

1 1 1 u  
p = =(gP Ig), '5 ( P ) O  - .1(D2)o,,) = 4 - +m. (19) 

Carmelo o af [34] examined the accuracy of the present method for the pure 
Hubbard model. 'RI be more specific, they compared the above correlation energy as 
a function of U for half-filling with the exact Bethe solution [36] and found a signfi- 
cant difference for U > 2to. It is not !mown, however, whether this deviation signals 
a similar mend for systems possessing dimerization. In the case of a finite Peierls- 
Hubbard chain the method of complex-phase averaging [18] allows predictions for the 
infinite case. Considering a single chain we find a monotonically increasing dimer- 
ization for small values of the electron-phonon coupling and a monotonic decreasing 
one for large & (> 0.7). This is in contrast with [18] where the guess for infinite 
systems shows a true maximum. 
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5. Perturbational approach 

In addition to the variational approach it is useful to study other methods in order 
to gain some insight into the coupling mechanism and to test the quality of the 
variational results. Metzner and Vollhardt [37] showed that second-order perturbation 
theory [38] yields the exact result [36] for the pure Hubbard model in the weak 
mupling limit and approximates the exact energy for intermediate coupling strengths 
(U < 101,) well. We extend their calculation to the case with dimerization. 

5.1. Single chain 
In second order the correlation energy is given by 

In this formulation D (see section 4) produces excited states I e )  from the Peierls 
ground state Ig,). Equation (20) is evaluated in four steps 

(i) First, the unitary transformation, which diagonalizes the unperturbed Hamil- 
tonian, is modified. Therefore new operators with new wave vectors are introduced, 
which run twice over the Brillouin zone-once over the valence states, the second 
time over the mnduction band (see symbol BZ2 in (21)). 

(U) Second, D is expressed by these operators and it turns out that the trans- 
formed Hamiltonian can be treated more easily, because the scattering between the 
valence and conducting states is hidden in the amplitude of the perturbation operator. 

(;U) Third, it is argued (see [38]) that the normal ordered D acting on a Fermi 
sea possessing no holes scatters either two particles or none across the Wrmi level 
and that state ( e  I must contain the corresponding excitations. 

(iv) Fourth, the four-body expectation value (20) is reduced to the corresponding 
product of oneparticle expectation values using Wick's theorem [35]. 

The single SSH chain is diagonalized hy the transformation (Al) in [29]. We sep- 
a&te this formula in even and odd lattice points in order to get rid of the alternating 
signs. Introducing the new operators we get 

(21) 

where ay,, annihilates an electron in the band, which is connected to the wave vector 
via the function 

if 1 refers to a valence state 
if 1 refers to a conducting state. (22) 

Next, we insert transformation (21) into the Hubbard operator of a single chain [29] 
and obtain 
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with the scattering amplitude 
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where we have used the abbreviations 

2Pjklm- - - 0 . + t 9 , - d , + O m  

for the phases of the electron states involved and the signs 

A j k l m  = - A j  f - f Am (26) 

which depend on the combination of scattered valence and conducting states (see 
(22). Moreover, we take normal (U = 0 )  and Umklapp processes (v = kl) into 
account. Third, we follow Lindgren and Morrison (section 11.2 in [38]) and calculate 
the normal ordered D and find that the Hubbard operator acting on a closed electron 
shell (no holes below the Fermi level) can be reduced to 

(27) 
1 

D=-- F E x h 6 , k r a i , , l a i , , ,  a k , , t a k ? , l  N 
k i h E t 1 6 2  

where the wave vectors hi run over all occupied and ili over all unoccupied states of 
bo) .  

Finally, the correlation energy is given by the formula 

with 

2 - 16 lFEB k t  kz kll  - z E l , k l - E l + k l + v s  [’ f cos (2rlL, k, b a k l  - T ( A 6 r  k, 6 2  kr  + v ) ) l  (2g) 

and with the occupied (unoccupied) single-particle energies Ek, (EE,). Here we have 
used the abbreviation )o  for the Peierls ground state lgo) and the density operators 
n k n , c  = a t ; , a a k , , a  for the electrons and = 1 - nEip0 for the holes. In the 
case of half-filling and N -t a?, the formula (28) can be evaluated numerically by 
standard integration methods. 

It is well known that the Peierls energy has two stable minima (see figure 5 in 
[6]). Surprisingly even the correlation energy is a double-well potential as a function 
of dimerization (see figure 1). Note the variational and the perturbational results are 
exactly equal for larger amplitudes of the dimerization. In the limit A = 1 the chain 
decouples into dimers, obviously. Let us expand the exact dimer ground state energy 
[39] in analogy to (17): 

Setting the dimer hopping element 1 equal to 1 + A we find that its second-order 
coefficient numerically equals the variational and the perturbational results for A = 1. 
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-0.015 

1 -0.018 

-0.021 
Flgure 1. Correlalion energy ccocr(A) per site for 

" " "  " C  I "  t~ = 0 fin units of to). Variational result (18) ." -".> "_" "_, ,." . ,  
A (&lid); pe;turbalional &ult (2s) (dolled). 

It is known that the Gutzwiller wave function exactly solves the dimer problem 1401; 
on the other hand, this limit of the model is unrealistic, as for large displacements 
the linear dependence of the hopping integral on the lattice coordinates has to be. 
modified and replaced by an exponentiil dependence (as in the model of Brazov& 

We agree with Kivelson and Heim [28] that potentials as in figure 1 enhance the 
dimerization. However, this potential is only part of the total energy. Obviously the 
relative pasition of the M i a  of E~ ( E ~  defined in (6) for t l  = 0 )  and of 
determines whether the Hubbard-U enhances or reduces the dimerization. We stress 
that he e[eclron-phonon coupling & shifls the minima 4 E,, whereas the minima of 
eCorr are not affected. In contrast to what was found by Kivelson and Heim [28] our 
correlation energy does not change from a double-well to a parabolic potential for 
larger U. Therefore we obtain no maximum for A as a function of U. 

5.2. Two &aim 

The procedure for WO chains is equivalent to the case of one. In the appendix we 
give the modified transformations (A17)-(A24), which are inserted in the Hubbard 
operator (7). We obtain the square of the scattering amplitudes for parallel ordering: 

el d 1411). 

a -  1 6  1% k L E a k l l  - E 6 2 , k l - 6 1 t k & v r  (' + e i * p ' t k ' T ' k 2 )  

x [1 +cos ( 2 % l k , i l k l  - " ( h . 1 6 , k ,  -I- 411 (31) 

and for antiparallel ordering: 

We have introduced the new abbreviations 

e j k l m  = - p j  f e k  - pl  + p m  

with 

if k refers to El;: 
if k refers to El;: 

(32) 

(33) 

(34) 
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-_-.- - ."." ..-. _..--.-..-.. lp," - ., L".....UL. - " _.U .I \,,, YE,,_ ." ' 0 1  

[a) Dimensionlen electron-phonon mupling 6 ~ s ~  = 0.57. Note lhe different regions 
for Ihe undimerized, metallic SLlle (large t l  and U not Ua lam) and the dimerized 
phase. Penurbation theory Cads U, the Same dependencis. (b) Large eleclron-phonon 
mupling 6 = 1. Results of perturbation dculation. The mmponding Gumiller 
renults decrease similariy as a function of U for small 11 and do not depend on tL. 

and 
- 
'jklm = - ' j ,p ,  + O k , p h  - Ol,,u + zpm,pm (35) 

(Ok and Ok, l  are given in the appendix). In & to  the one-chain model the 
6-functions in (31), (32) can additionally scatter the electrons between the bands, 
which belong to different chains in real space: consider a certain random selection 
of wave vectors G I ,  k , ,  k,. The wave vector i2 lies in the Brillouin mne. Nowhere 
else are there electron states. Otherwise we have to add a reciprocal-lattice vector. 
At half-filling, two empty states with the Same wave vector are always contained in 
[go). Therefore the resulting &, refers to two states, which belong to different bands. 
Consequently the Coulomb interaction couples the chains. The "elation energies 
are calculated using a Monte Carlo integration. 

6. Discussion of the results 

We summarize the main results first and discuss some details aftenvards For the 
parallel dimerized model without electronic correlations (U = 0), we find a crossing 
of the upper valence and the lower conduction band, which is related to  an insulator- 
metal transition. If the interchain coupling exceeds a certain threshold value, the 
dimerization jumps from a finite value to zero, which leads to partially filled bands 
and to a delocalization of the rrelectrons. For the antiparallel dimerized model we. 
find that the amplitude of the dimerization slightly depends on the interchain transfer 
element. Independently of t l ,  the antiparallel dimerized configuration is energetically 
favoured in comparison with the undimerized or the parallel dimerized chains. 

For finite Coulomb interaction (U # 0) we find that the energy difference between 
the undimerized or the parallel dimerized configuration and the antiparallel dimerized 
structure first increases and then decreases. The number of doubly occupied sites may 
explain this effect: for finite Hubbard interactions there are more paired electrons in 
the antiparallel than in the parallel dimerized structure. 

Finally, we find that even in the case of band crossing the correlated wave function 
is favourably constructed by valence states only. 
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The details are as follows. In the case of parallel dimerization the interchain 
coupling simply shifts the hands belonging to different chains versus each other. In 
figure 2(n) we show Ap/&ssH as a function of t L  and U. Fbr U = 0 and increasing 
1, the amplitude A, does not depend on t,. Both valence bands are fully occupied 
and therefore the correlation function Cl,,, (equation (A13)), which couples the 
chains, vanishes. Up to a threshold value I,,= E 0.2 for the electron-phonon coupling 
h,,, = 0.57 the chains behave as an uncoupled system and for all tL < t,,+ there 
exists a finite gap E, = 4AP-2t,. For Ap < t , /2  the single-particle energies E& 
and E:,, cross at a certain wave vxtor kc. Then the electrons with k 2 Ikcc,l are taken 
from the VI into the C, band in order to fill the energetically lowest single-particle 
states and to avoid holes in the highest occupied single-particle states. For 1, > t,,c 
we find Ap = 0 .  In this case one has undimerized metallic chains and the bands 
could be considered in the original, i.e., extended Brillouin zone: here there are two 
partially filled cosine hands. 

For larger electron-phonon coupling the dimerization and therefore the energy 
gap increase. For & = 1 and U = 0 it can he seen from the plot in figure 2(b) that 
the alternating hopping along the chains jumps between 0 and 2, i.e. the electron 
transfer along the chains is interrupted. 

Contrarily, in the case of antiparallel dimerization the interchain coupling acts on 
the energy bands more complicatedly. In particular, there is no crossing between the 
higher valence and the lower conduction band. Instead, these bands seem to repel 
each other in order not to cross. Moreover, the two valence (conduction) bands are 
not independent functions of t I  explicitly they are always degenerate for k = f n / 2  
and arbitrary t,. 

In figure 3 we have calculated A,,/6 in analogy to figure 2 For U = 0 it is seen 
that strong interchain coupling slightly decreases but cannot destroy the dimerization. 
The increase of the electron-phonon coupling leads to larger dimerizations, hut there 
is no electronic decoupling along the chains for stronger &, because the directly 
_____I.^ &___I^ _I:=*_ L.. n A 

-.r.- -. ."... r ".....-. I....I..I _..-.. --.pl~. Ine system oepenos only wea~ly on me 
strength of t,. (0)  For electron-phonon mupling 6 ~ s "  = 0.57 (Gumiller lesults). 
(b) For eleclron-phonon mupling 6 = 1 (penurbational results). Note the negative 
slope as a function of U. The Gutzwiller and the penurbation methods give the Same 
dependencies on the parameten for (a) and (b). 

In formula (19) we have shown that the Huhbard interaction breaks up some pairs 
and therefore influences the ground state and its dimerization. In the case of the 
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parallel dimerized model figure 2(a) shows that the on-site repulsion increases t,,c. 
For tl < l l ,c  it is found that the valence (conduction) bands are full (empty) and 
therefore C,,,, vanishes, Le. the total energy (equation (17)) does not depend on 
1,. Nevertheless, there are two different phases, which are distinguished by Eg > 0 
(t,-independent phase) and Eg = 0 (U-independent phase). While in the fust phase 
the chains are actually decoupled, in the U-independent phase there is a competition 
between the lattice energy and the ‘band filling’ for increasing tL .  The result is that 
the V, and the C, band only touch each other but do not overlap, and that the more 
favourable ‘band filling’ compensates the inerease of the lattice energy. Obviously, 
whether one projects pairs from full valence bands or from a mixture of valence and 
conducting states makes a difference. 

The variational and the perturbational approach both lead to the same amplitude 
of the dimerization, but there are significant energy differences, which have to do 
with the competition between ‘band filling’ and lattice. 

In figure 2(6) we show perturbational results for strong electron-phonon coupling. 
Fbr small U the decrease of the dimerization does not depend on Il. In contrast to 
the variational results the dimerization for larger U depends on t,. For parameters 
U, t ,  both large, the ‘band filling’ effect stabilizes the dimerization and leads again 
to an U-independent phase. 

Within the antiparallel dimerized model there are no exceptional influences of 
U on the dimerization. Both approaches agree for the different electron-phonon 
couplings: in figure 3(a) we show that for ErssH the dimerization is increased by 
U and in figure 3(b) that for strong electron-phonon coupling the dimerization is 
decreased by the on-site repulsion. 

Next, we want to demonstrate that an increase of the Hubbard interaction leads to 
a stabilization of the parallel dimerized structure. We calculate the energy difference 
between the lattice structures given in the figures 2(u) and 3(a). The results are 
shown in figure qa) :  for increasing Hubbard U the energy difference fust increases 
then decreases; finally the parallel dimerized structure becomes stable (negative value 
of 6e,, in figure 4(a)). Figure 4(b) suggests a possible explanation: for a small on-site 
repulsion the number of paired electrons on the undimerized chains is greater than in 
the stable antiparallel dimerized phase. Stronger electron-electron interactions lead 
to parallel dimerization with fewer pairs than the antiparallel dimerized phase. 

These dependences on U are conserved for stronger electron-phonon coupling. 
It seems possible that a change of the microscopic parameters by external impacts 
leads to new conformations as for example in the hydrogen-bonded polymer HBr [42], 
which goes at high pressure &om the asymmetric to the symmetric bonded phase. 

Based on these results we propose a new ‘band filling’ for the parallel dimerized 
model. As we have seen in figure z(a) there has been a competition between lattice 
energy and ‘band filling’, which has led to the U-independent phase. Originally, we 
have operated with the Gutzwiller projector on the true U = 0 ground state, but we 
have found no dimerized ‘metallic‘ ground state. Now we operate on a U = 0 excited 
state: we select an alternative trial wave function, where the valence (conduction) 
bands are always fully occupied (empty) even in the case of band nossing (A, < 
t , / 2 ) .  In other words, to form the U > 0 variational state, the Gutmiller projector 
D aets on an excited eigenstate of H,, Le. there are holes in the energetically 
highest occupied singleparticle states. This new feature leads to divergences in 
the perturbation theory (one has to use the formalism of open shelf systems 1381). 
Therefore, we have used the variational approach to calculate the dimerization shown 
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Plgum 4 (a) k n e w  differena belween the lsomer results or figure 2(0) and %a): 
6rA = 100 ( I A . ~  - e A p ) / ~ ~ . p  for Bss” = 0.57. Calculation with Gutmiller wr- 
relation eneqy (18). For finite on-site repulsion 6cA increases and then decreases. 
Penurbation theory yields a taster energy stabilization (6rA < 0 toor U 2 4) of the par- 
allel dimerized structure than the Gurzwiller expansion. (b)  me number of the apected 
pairs 2N6P on L e  undimerized or pn l le l  dimerized chains rnirrur the pairs on the 
antiparallel dimerized chains (6P = Pp - Pap, P from (19)). U > 0: in real space 
the undimerized (metallic) rrystal wntains the m a l  pain and the antiparallel dimerized 
wnfiguntion morr than the pn l le l  dimerized phase. 

in figure 5. The unusual U-independent phase has disappeared and the bands cross. 
This dimerized ‘metallic’ state costs slightly more electronic energy, but much less 
lattice energy. Moreover, the precise comparison between figure Z(a) and 5 shows 
that the new order of the electrons in the bands enhances t,. Let us list the advantages 
of the dimerized phase. 

(i) The dimerization costs lattice energy and the creation of holes leads to an 
energy increase for the single particles, which have to leave the conduction band 

(ii) The gain of energy is caused by the new dispersions (E:,’: depend on A) 
and, what is most important, by the larger correlation energy. 

(iii) Finally, figure 6 gives energy-based evidence that the Peierls-Hubbard system 
prefers valence states as compounds of the correlated wave function. 

Applying the model calculations to polyacetylene we choose the standard pa- 
rameters a = 4.1 eV A-1. n = 21 eV A-2, t ,  = 2.5 eV, which lead to 
& = a/m % 0.57. Assuming a realistic interchain hopping parameter less than 
0.2 to we see from figure 4 that the energy difference between parallel and antiparal- 
lel ordering is very small and tends to favour the parallel ordering for larger Hubbard 
U. Ultimately it seems plausible that (CH), k always near the transition between 
the two phases, which would be consistent with the experiments of Kahlert et al 1161. 
Because of the weak interchain coupling, we do not expect correlation-induced holes 
in the highest occupied single-particle states. 

Note, however, that the theory presented is not limited to polyacetylene. It makes 
sense to conceive this material as embedded in a theory for general graphite and for 
the broader class of synthetic metals 1181. Indeed, the newly reported electronic 
properties of graphitic microtubules depend sensitively on the tubule structure. Using 
a tight binding method Hamada et al [43] find band structures with and without 
crossing as a function of the various atomic configurations. M(dmit), salts [44, 451 
also seem to show the strong features of the model with parallel bonds discussed 
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Pip”- 5. Parallel dimerization. A,/rrss~ for the 
Gutmiller method. If Es = 4A, - 2 t l  < 0 
the dirnnirrd phase E alculated with an m’tcd 
eigcnstale of Ho: in mnlrast to the Peierls ‘band 
filling’ in figure 2(a) the n l e n e  bands are full and 
the mnduction bands empty. In spite of there k ing  
holes m the highest mupied single-panicle energy 
this new ‘band filling’ E energetically preferred. 

Rgum 6 Energy difference for Gutmiller re- 
sulIs based m the apcircd eigenstale of HO wilh 
full mlence (empty mnductian) bands (cne,. < 0) 
and based on the gmund Sale of H, wilh Peieds 
‘band filling’ (ep.icrl. < 0 )  6 q  = 100 (e... - 
ep.i..~.)/c..,. for 6 ~ s ~  = 0.57 (c..,. E stable 
if 6rc > 0). 

above. One only has to replace interchain by interstack interactions: T h e  strength 
of the interstack interactions depends subtly on the interaction geometry, and can be 
quite strong’ [U]. 

Generally, we agree with Horovitz [27] that pressure increases the interchain 
coupling, and that above some critical pressure the lattice instability in substances, 
which cannot arrange the bonds antiparallel, is suppressed. ’Clking the new correlation 
effect into account we find that the undimerized phase is always metallic, whereas the 
dimerized one is insulating only if the hands do not cross. 

7. Conclusion 

In short, we state the main results of this paper. An increase of the electron- 
electron on-site repulsion may lead to a transition from an antiparallel dimerized 
ground state to a parallel one. For finite Hubhard interaction the number of paired 
electrons in real space depends on the lattice structure under consideration: it is 
smallest for parallel dimerized chains and largest for undimerized ones. Applying 
our model calculations to polyacetylene we find that the energy of both the parallel 
and antiparallel dimerized structures does not differ significantly. The assumption 
of parallel dimerized bonds enables us to explain that an increase of the interchain 
hopping may lead to an absence of the lattice instability. 

In summary, the variational and perturbational model calculations yield consis- 
tent results. It is important to stress that the Gutnuiller variational wave function 
allows to make different choices for the underlying one-particle wave function. For 
finite Huhbard interaction and finite dimerization we have found that the Gutmiller 
projector operates on fully occupied valence bands even if they cross. 

Generally, it is interesting to apply the method to substances as graphitic mi- 
crotubules [43] and to get more insight in the many-body problem, e.g. to include 
off-diagonal electron-electron interactions [lS]. 
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Appendix 

The pure RierIs Hamiltonian (1) for paraIIel bonds is diagonalized by 

+d&,- + (-l)"d&,ul 

with the phase 

9 ,  = 5 arctan (Ap tan k )  

and for antiparallel bonds by 

and the step function 

0 x z < o  
1 ifa)O. 

Q(z) = 



with the amplitude 

and for anliparaUeI ordering 
+k ,mn  = cos(k(n - m)  + [(-I)'' - (-1)"') 4 k )  ('414) 

1 c,,,,, = -E {cos ( W n  - m) + I(--1lm - ( -1)"1 .pk,1)  

x (golnF,, + ( - l ) m + n n "  k.11gO) 

+ cos ( k ( n  - m) + 
x ( s o l 4 , z  + (-1) nk,* l%)}  

x (SolnF,, - (-1) %,1190) 

+ cos ( k ( n  - m) + [(-lY t 
x (sol4,* - (-1) 

2 N  k 

- (-1)"129k,2) 
(A151 m t n  C 

1 
Cm+ = {-cos (kCn - m )  + K-lY + (-1)"l &,I) 

I; 

m t n  V 

.pI ;J  

(-416) m t n  C 
nk,zIso)) ' 

In the case considered infinite chains (N 3 CQ) and periodic boundaly 
conditions-the correlation functions can be easily evaluated by numerical integration 
over the Brillouin zone (see [6, 291). 

The unitary wansformations (Al), (A3), which diagonalize the two chain models, 
are redefined to simplify the procedure of second order perturbation theory. 

In the case of parallel dimerized chains: 
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with A, defined in (22) and pi io 34). 
In the case of anttpamkI dimerized chains: 

1 er12ntiff I.*, a 
b 

IEBZ' 
('423) 
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